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ABSTRACT. Broadscale statistical evaluations of wildfire incidence can answer policy-relevant
questions about the effectiveness of microlevel vegetation management and can identify subjects
needing further study. A dynamic time series cross-sectional model was used to evaluate the statistical
links between forest wildfire and vegetation management, human land use, and climatic factors in
Florida counties. Four forest wildfire risk functions were estimated: one for fires regardless of ignition
source, and three others for fires of specific ignition sources: arson, lightning, and accident
(unintentional anthropogenic). Results suggest that current wildfire risk is negatively related to several
years of past wildfire and very recent site prep burning, and risk is positively related to pulpwood
removals. The effect of traditional prescribed burning on wildfire risk varies by ignition source. El Nirio-
Southern Oscillation (ENSO) sea surface temperature (SST) anomalies were also significantly linked
to forest wildfire risk, but a measure of the wildland-urban interface was not significant. Although these
county-level results hold promise for aggregate risk assessment, modeling at finer spatial and
temporal scales might further enhance our understanding of how land managers can best reduce the
longer term risk of catastrophic wildfire damages. For. Sci. 48(4):685-693.
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T HE 2000 WILDFIRE SEASON in the United States burned
3.5 mill ion ha and resulted in federal  direct  suppres-
sion costs of nearly $1.3 billion (National Inter-

agency Fire Center 2001). Many industry, environmental,
and land management experts have attributed the extraordi-
nary number of wildfires to decades of fire suppression on
forests and rangelands of the West and other wildfire prone
regions. Land managers and policy makers have proposed a
number of  act ions that  could reduce losses from catastrophic
fires (USDA Forest Service 2000). Some of these proposals
are controversial because they involve large increases in

expenditures on wildfire suppression and vegetation man-
agement along with many policy recommendations for local
and state governments and private landowners. Proposals
include higher rates of prescribed burning, mechanical thin-
ning, and timber harvesting than observed in recent years.

Wildfire and many of the measures to reduce wildfire risk
have ecological, social, and economic implications, so re-
search that effectively describes where, when, and why
wildfires occur may enable more effective and forward-
looking damage reduction strategies. Catastrophic wildfires
affect the welfare of t imber producers and consumers,  disrupt
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the broader economy, destroy structures, and injure and kill
people in affected regions (Bellinger et al. 1983, Butry et al.
2001). Such catastrophic risks can affect the timber manage-
ment decisions of private landowners (Martell  1980,  Routledge
1980, Reed 1984, Caulfield 1988, Valsta 1992, Yin and
Newman 1996, Hesseln et al. 1998)  so economic efficiency
of t imber production is  dependent  on an understanding of  the
factors that  affect  those risks.  Vegetation management activi-
ties can also affect forest products producers as well as
consumers by altering supply and demand conditions. Pre-
scribed burning and changes in wildfire regimes affect the
health of local residents through smoke emissions and the
ecological  condit ions important  to  wildl i fe  and water  qual i ty .
Finally, wildfires and all kinds of vegetation management
activit ies may affect  net  carbon emissions to the atmosphere
(e.g., Kurz et al. 1991).

Thus far, recommendations on ways to reduce the aggre-
gate costs and damages arising from wildfire have been
derived from extrapolations from how fires burn at fine
scales. This raises questions about how to extrapolate from
fire behavior to fire r isk and the appropriate scale of analysis.
Fire behavior studies have been mainly fine-scaled, carefully
controlled statistical analyses and simulations, providing
insights into how factors such as fuel ,  wind,  topography,  and
moisture affect fire behavior. This research has enabled a
deep understanding of fire behavior, yielding tactically use-
ful models such as BEHAVE (Anderson 1982, Andrews and
Bevins 1999) and the FARSITE  Fire Area Simulator (Finney
1998, Finney and Andrews 1999).

Fire risk, or the probability that a particular place on the
landscape will experience a wildfire within a discrete period,
is related to many of the same factors affecting fire behavior,
but i ts  assessment requires a different frame of analysis,  one
that relates wildfire to factors affecting wildfire risk over
broader spatial  scales and longer t ime scales (e.g. ,  Donoghue
and Main 198.5, Keeley et al. 1999). While less common, this
research would seek to relate wildfire risk to the activities of
humans, land and vegetation characteristics, and weather
patterns or climate. For example, research has shown that
weather and climate factors related to the El Nifio-Southern
Oscillation affect  broad scale wildfire risk over many parts of
the United States (Brenner 1991, Barnett and Brenner 1992,
Simard et al. 1985, Swetnam and Betancourt 1990).

Previous broad scale studies faced data and modeling
constraints that  prevented inferences about how wildfire r isk
was related to human activities, vegetation, and land use
patterns. It is our contention that descriptors of land use
patterns and other human activi t ies such as vegetat ion man-
agement, which can modify the effects of weather and cli-
mate on wildfire risk, should be included in a more compre-
hensive statistical analysis of wildfire risk. lmproving our
understanding of human-fire interactions may facil i tate more
effective vegetation management and suppression planning
in rural as well as in wildland-urban interface (WUI) set-
tings-elevated human populations living in natural settings
adjacent to population centers. It may also reveal the risk
factors relevant to land use planning, f ire resource decisions,
and forestry or homeowner fire prevention incentives pro-
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grams. Until we identify the individual effects of various
kinds of human interventions on wildfire patterns in the
presence of weather patterns or climate, valid evaluation of
their trade-offs on large spatial and temporal scales is not
possible .

The objective of this article is to analyze wildfire risks in
a developed landscape at a longer time scale and a broader
spatial scale than typically attempted. The statistical ap-
proach used here, which links fire probability to hypoth-
esized explanatory variables at  the county level  of  resolution,
allows us to identify the individual effects of alternative
strategies for reducing wildfire r isks.  The broad spatial  scale
of analysis, similar to that used in epidemiological studies,
can identify the statistically most important factors contrib-
uting to wildfire risks and damages. It is also a means of
isolating knowledge gaps and therefore potentially useful
finer scale additional analyses. Another benefit of the
broadscale modeling approach is  to elucidate how the WUI in
wildfire prone regions is related to wildfire patterns. Hu-
mans, through a variety of influences such as igniting fires,
putting out fires, and altering land cover, are important
factors shaping wildfire risk.

The subject of our analysis of wildfire risk is Florida, a
human-dominated and vegetatively altered landscape prone
to wildfire. Florida was once dominated by fire-dependent
longleaf pine (Pinu.spalusrris  Mill . )  and wetland and bottom-
land hardwoods, but it is now a heavily human-altered
landscape with a mix of land uses and cover types that now
also includes urban and suburban lands, agriculture, frag-
mented natural pine-hardwood forests, and slash pine (P.
elliottii Engelm.) plantations. In the research presented be-
low, we describe the specifications for our wildfire produc-
tion funct ions and detai l  our  s tat is t ical  approach to est imating
them. We discuss next the results of our estimates and
conclude with comments about  their  policy and management
implications and how future modeling could proceed.

Methods
Our approach to wildfire modeling follows theoretical

discussions of  wildf ire  product ion funct ions by Rideout  and
Omi (I 990) and Hesseln and Rideout  (1999). Hesseln and
Rideout  discussed the function in the context of economic
optimization using control theory (see Silberberg 1990)  in
which such a function is  a key consideration.  While Hesseln
and Rideout’s  analysis  did not  spel l  out  an exact  specif icat ion
of a wildfire production function,  i t  described an approach to
thinking about land management in the presence of wildfire
at broad spatial and temporal scales. In this research, we
describe one possible specificat ion of the wildfire production
function, a dynamic and spatially explicit representation of
annual wildfire activity.

Our version of the wildfire production function[  I] relates
wildfire  output ,  W,,  to  vectors  ofexogenous inputs  Z,,  Wtwj  (a
,j-dimensional vector ofjyr of past wildfire), and current and
past levels of intervention or control variables (e.g. ,  suppres-
sion and presuppression),  xtpk. Inputs are measures of factors
expected to affect aggregate wildfire activity, including fuel
loads,  the contiguity of  vegetat ion,  the availabi l i ty of  wildfire



suppression resources, and climate or weather patterns. Be-
cause wildfire r isk could be related to the source of  ignit ions,
and because the mix of ignitions varies across a landscape, we
specify separate wildfire functions for major categories of
ignition sources.  The separate specifications therefore permit
the influences of the hypothesized explanatory variables to
differ among the major sources, potentially providing addi-
tional insights into why wildfire patterns may vary among
regions even after controlling for differences in the levels of
wildfire inputs.  In our analysis ,  the spatial  unit  of  inference is
the  county.

The burned area of forest wildfire ignited by source s  in
county i in year t (W&  is related to the amount of forest in
the county (FJ,  past levels of forest wildfire by all sources

s=l

for j lags, a vector of current and k lags of the county’s
permitted traditional prescribed burning area (HB&, a
vector of current and 1 lags of the county’s permitted forest
site prep plus seed prep burning area (SB, ,J[2] a vector of 
lags of  the volume of the county’s pulpwood harvests  (Pi t+J,
housing count in the county (Hi,J, measures of underlying
ecological variables (e.g., land form, potential vegetation
communit ies ,  soi ls)  of  the county (2,.)[3], and the Nifio 3  S S T
(sea surface temperature) anomaly in degrees centigrade (EJ,
a metric which indicates both the direction and magnitude of
the El NiAo-Southern  Oscillation (ENSO).  All but the eco-
logical measures and ENS0 variables are expressed relative
to forest area in the county (FJ,  which effectively converts
the wildfire production function into a wildfire risk function.

Noting the expected direction of effect, the model is
generally specified as:

Ws,i,t wit-j
- = &g-t-)9

IIBi t - k

Fi
----L--(-L

SB, r-I  ’

F,
I
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-q--  (->>

I

The expected direction of influences of the wildfire input
variables shown above could be explained as follows. We
expect that previous wildfires reduce current risk because
previous wildfires consume flammable vegetation and create
a more fragmented landscape (Miller and Urban 2000). Such
fragmentation of fuels on the landscape can inhibit  the spread
of new wildfires, although countervailing influences are
possible: fragmentation may allow fuels to dry more easily
and allow stronger surface winds to develop, for example
(Ranney et  al .  198 1).  Tradit ional  prescribed burning,  si te plus
seed prep burning, and harvesting of small-diameter material
are expected to reduce wildfire risk as long as such burning
does not accidentally escape and such harvesting does not
increase fuel loads. Housing could have a positive or a
negative effect on wildfire risk: greater housing density
might imply quicker detection, faster firefighting response
capability, and greater firefighting resources applied to pro-

tect  s tructures and people.  In addit ion,  housing is  l ikely to be
associated with breaks in fuel contiguity because of yards,
roads, and other constructions, all of which could facilitate
firefighting access and impede wildfire spread. Alterna-
tively, the greater risk of accidental ignition or arson associ-
ated with development may lead to more wildfire.

The underlying ecological variables (z)  affect wildfire
risks in many and sometimes counteracting ways, the net
effects of which are difficult to predict. For example, the
vegetat ion dominating the forests  of  some ecological  zones is
highly flammable and encourages wildfire spread, while
other ecological zones contain standing water or agricultural
development that break up fuel contiguity and slow wildfire
spread.

Wildfire risk is expected to be negatively related to
ENSO-induced central Pacific SST anomalies (Brenner
1991, Barnett and Brenner 1992). Because the spatial and
temporal units of inference in our analysis are different
from those in previous research, however, the statistical
link between such anomalies and wildfire found by our
study could differ. Casual observation of ENS0 for the
1997-1998 fire season reveal that SST anomalies were
mostly positive even though wildfire was catastrophic that
year, illustrating the unusual nature of the 1997-1998
cycle (Ropelewski 1999). This cycle was dubbed Super El
Nifio because the posit ive SST anomalies were the largest  in
over 50 yr  of accurate sea surface temperature data and larger
than any observed in monthly proxy data extending back to
1856 (Woodruff et al. 1987). Its teleconnections to Florida’s
weather may therefore have differed from typical ENS0
cycles, and for this reason we introduce a dummy variable,
E lg9s,  equal to 1 in 1998 and 0 in other years, which should
pick up any difference between the “typical” ENSO-wildfire
relationship and that observed in 1998.

Because our data form a longitudinal series of observa-
tions for each county, we specified a fixed-effects panel data
statistical model to capture individual effects characterizing
the observational  units  (counties) ,  effectively controll ing for
static county-specific factors (e.g. ,  those contained inz).  The
panel model contains an error term, wi  t,  associated with each
observation. In the classical generalized regression model,
E[oi  t]  = 0, Vur[oi  t] = cr*,  and Cov[u+  t,  oj,,J = 0 (i#j,tfs).  In
the hxed-effects  regression model, C&o,  t,  oj t]  (i#j) may
be nonzero.  Unless the cross-sectional error correlations are
addressed, OLS estimation done by simply pooling time
series andcross-sectional data corresponding to the variables
in (1) would be inappropriate (see Greene 1990, p. 469-472).
We expect, in fact, that cross-sectional error correlations
could arise from correlations across units in static (in the
spatial and temporal time frames considered) variables af-
fecting wildfire. The fixed-effects panel model controls for
the cross-sectional correlations by introducing a set of i
dummy shifters for each county, d,.  In this framework, the
effects of ecological zones identified in (I), 2, on wildfire in
each county are captured by the coefficient on the dummy
shifter for the county. Time series error correlations in the
fixed-effects approach can be evaluated using traditional
indicators (e.g., by examining the correlograms of equation

Forest Science  48~4)  2002 687



residuals) and corrected by specifying a more elaborate
model (Greene 1990, p. 4799480)[4].

Another factor affecting model estimation consistency is
heteroscedasticity in the distribution of the residuals. We
account for this by applying two estimation procedures and
one data transformation. The first estimation procedure is
White’s method (White 1980), which accounts for errors
associated with the size of explanatory variables in the
model, and the second is cross-sectionally weighted least
squares (see Greene 1990, p. 465-469),  which accounts for
groupwise (i.e., within the cross-section, the county in our
case) heteroscedasticity in the error terms. The data transfor-
mation that we apply is to take the natural logarithm of each
variable. The ENS0 measure, which is often negative, is not
transformed in this way, however.

A final source of error correlation that can produce statis-
tical inconsistencies in estimation is spatial autocorrelation
among observational units (Anselin 1988). Spatial
autocorrelation exists if  the errors in a cross-sectional data set
are correlated across (spatial ly oriented) units  of observation.
We tested ex-post for evidence of spatial  autocorrelation and
found none. [S]

The specification of this model was therefore:

This equation forces the structural relationship between
wildfire area and right-hand-side variables to be identical
across all counties, although the intercept-shifting county
dummies allow endemic levels of wildfire to vary across
counties due to, for example, the ecological zones.

Data limitations forced a compromise between informa-
tion (degrees of freedom and available cross-sectional units)
and risk of model inconsistency. In particular, we lacked a
long series of  observations on tradit ional  prescribed burning
and si te  plus seed prep burning.  The number of  lags of  these
variables in the estimated version of (2) was small; longer
lags revealed no new insights on their effects but removed
information from the data (by reducing the number of useable
observations). Because a process of model selection was
undertaken rather than a wholly approach, the statis-
tical significances  should be interpreted with caution.

Data

Our analyses relied on two datasets  obtained from the
Florida Division of Forestry. The first contained records of

all wildland fires reported to the State since 1981. This
dataset  included the date that the fire was first reported, the
location of the fire (county, township, range, and cadastral
section of its origin), the fire’s dominant fuel type, and the
total area burned. Because we focused on forest wildfires,
wildfires whose principal fuel was classed as “grassy” were
not included in the analysis.]61  Missing data on prescribed
burns forced us to drop some counties from the dataset  used
for estimation. We also dropped 13 counties with federal
landholdings; most fires on federal lands were not included
in this database.  Federal  areas included Eglin Air Force Base,
NASA’s Cape Canaveral, Everglades National Park, Big
Cypress Wildlife Preserve, and the National Forests of
Apalachicola, Osceola, and Ocala.

A plot of forest wildfire (ha yr-‘)  by ecoregion section
(Figure 1) illustrates the variability across ecoregions. This
confirms the importance of accounting for spatial  differences
in endemic wildfire by estimating a panel data model. Also
notable in the data is the cusped  nature of wildfire-high
wildfire activity in one year,  followed by several  years of low
wildfire activity.

Our second key dataset  describes burn permits  issued by
the State of Florida. The State requires permits for open
burning, valid for 1 day following their issuance. Permission
may be granted to implement the burn on a later  date,  and such
a continuance is  not  counted in our analysis  as a  new permit .
The burn permit database contains one record per initial
permit  and includes the day of the permitted burn,  a  purpose
code, the total  burn area permitted, and the township, range,
and cadastral section of at least one portion of the intended
burn. The records span differing periods depending on the
county,  extending as far  back as 1989 but with full ,  s tatewide
coverage not achieved until 1993. Burn permits issued for
agricultural purposes were not used, including burns of
rangeland. The areas of traditional prescribed burn and site

1 ,ooo,ooo

z 100,000

ij
ST2
8
2E 10,000

2
2Lc:
$

1,000

1 0 0

n

Fire Year
Figure 1. Wildfire area (ha) by fire year (October 1 through
September 30) and ecoregion section (Bailey 1995),  1982-1999.

688 Forest Science 48(4) 2002



Figure 2. Area (ha yr’) for which traditional prescribed burn
permits were issued, by ecoregion section (Bailey 1995). Permit
data were only available statewide from 1993 to 1999.

plus seed prep burn permits  issued are shown in Figures 2 and
3. They show that the area of prescribed bum permits in
Florida is less variable and much larger on an annual basis
than the area of wildfire. Prescribed burning occurred on
260,000 ha on average from 1993-1999, while wildfire in
forest  fuel types (Figure 1) averaged 46,000 ha annually over
the same period.

Because data summaries confirmed that  early fall  is  a slow
period for both wildfires and prescribed burn permits,  the fire
year in our analysis ran from October 1 to September 30.
Figure 4 shows that ,  despite some temporal  overlap in current
year wildfire area and current year permitted prescribed
burning area, the vast majority of prescribed burning in the
current year precedes wildfire in the current year. Any
remaining overlap of prescribed burn and wildfire area im-
plies that  a degree of model inconsistency could appear in our
equation estimate.[7]

The third set of data, pulpwood removals by county by
year, was obtained from the Forest Inventory and Analysis
unit of the USDA Forest Service, Knoxville, Tennessee.
The pulpwood variables shown in (2) were the sum of
softwood and hardwood pulpwood volume removed. Data
on pulpwood harvests were available for the calendar year,
not the October-September year of our analyses. Hence,
because some harvests can happen during and after fires in

Ocl  Nov Dee  Jan Feb Mar Apr May Jun Jul Aug Sep

Figure 4. Percent of average annual prescribed burn permit area
(sum of seed and site prep and traditional burn permits area) and
percent of average annual nongrassy wildfire area occurring each
month, 1993-1999. Note: data exclude sections in federal
ownership.

1,000,000

1 100,000

6
z 10,000

2
D 1,000

a”

100

Figure 3. Area (ha  yr’) for which site prep plus seed prep
prescribed burn permitswere issued, by ecoregion section (Bailey
1995). Permit data were only available statewide from 1993 to
1999.
a fire year, only lagged calendar years of pulpwood har-
vests were included, thereby reducing problems of simul-
taneity bias.

Housing data were drawn from county-level projections
(Bureau of Economic and Business Research 1999). The
Florida housing data were estimated annually by county
(Bureau of Economic and Business Research 1999) for
1980-1996. Housing was indexed by the stock of single- and
multi-family dwellings. The Bureau of Economic and Busi-
ness Research (1999) provided a county-by-county est imate
of dwellings for 2000. The 2000 figure was used to linearly
interpolate the number of dwellings by county for 1997,
1998, and 1999.

Monthly data on the measure of ENSO,  the Nifio 3 SST
anomaly, were obtained from the National Oceanic and
Atmospheric Administration (2000). Annual Nifio 3 SST
anomaly data were generated by averaging the 12 monthly
observations of the Nina 3 SST anomaly over the fire year
(October-September).  While such an aggregate figure misses
ENSO’s  intra-annual variability, the annual nature of our
other data limited our alternatives.

Results and Discussion
Model estimates were broadly significant, yielded differ-

ences among ignition sources, and described a wildfire pat-
tern that is highly dynamic (Table 1). Parameter estimates
shown in Table 1 illustrate the differences among the all-
igni t ions and the igni t ion-specif ic  forest  wildf i re  r isk models .
The all-ignitions model explained 67% of the variation in
wildfire risk by county by year. Parameter estimates show
that wildfire r isk in the current year was negatively related to
7 past years of wildfire. Wildfire in a county is reduced on
average by 0.29 ha for each ha of wildfire occurring in any of
the 7 yrpreceding. The suppressive effect of past wildfire was
found even when fire ignition sources were modeled sepa-
rately, its effect persisting for several years. In the ignition-
source specific models,  4 to 10 lags were usually negative and
significantly different from 0 at the 90% confidence level or
higher. In the lightning-ignited wildfire model, current wild-
fire is negatively related to past wildfire for up to 12 yr.
Hence, it appears that past wildfire is most effective in
lowering current  r isk of  l ightning-ignited wildfires  and some-
what less effective for arson- and accident-ignited wildfires.
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Table 1. Model parameter estimates of equations relating wildfire area relative to forest area to the ratios of
past wildfire, past prescribed burning, and housing density to forest area, and of El Nifio 3 sea surface
temperature anomaly (Niiio 3 SST), 1995-1999, all ignition sources combined, and disaggregated by three
ignijion sources.___---

Explanatory variable - -
ln( Wildfire Area,,lForest  Area)

In( Wildfire Area, JForest  Area)

In( Wildfire Area,_,lForest  Area)

ln( Wildjre Area,,lForest  Area)

In( Wild$re  Area, ,lForest Area)

In( WilcQ’ire  Area,,lForest  Area)

ln(  Wildfire  Area, ,lForest Area)

In( Wildjke Area,JForest  Area)

In( Wildfire Area,JForest  Area)

In( Willfire Area,_,dForest  Area)

ln(  Wildfire Area, , ,lForest  Area)

In( Wildfire Area,,,lForest  Area)

In(Site  Plus Seed Prep Permits/ Forest Area)

In(Site  Plus Seed Prep Permits, ,/Forest  Area)

In(Site  Plus Seed Prep Permits, ,lForest Area)

In(Trad.  P.B. PermitsjForest Area)

In(Trad.  P.B. PermitqJForest  Area)

In(Trad.  P.B. Permits,,lForest  Area)

In(Pulp  Harvest Vol.,JForest Area)

In(Pulp  Harvest Vol., ,lForest Area)

In(Pulp  Harvest Vol.,+,lForest  Area)

Niiio 3 SST, anomaly

1998 Dummy

In(Thousand  Houses, IForest  Area)

Number of cross-sections
Number of years
Total panel (unbalanced) observations

(0.06)
-0.40***
(0.07)
-0.2s**
(0.08)
-0.39***
(0.08)
-0.31***
(0.07)

-O.16**
(0.07)
-0.15*
(0.08)
0.061

(0.08)
0.12

(0.07)
0.098

(0.06)
-0.13*
(0.07)
0.07

(0.05)
-0.10***
(0.04)
0.06*

(0.04)
-0.05
(0.05)
-0.02
(0.05)
0.08

(0.08)
-0.13
(0.08)
0.59***

(0.18)
0.90***

(0.19)
-0.57***
(0.18)
-0.59***
(0.09)

1.86***
(0.18)
-0.05
(2.06)
39

5
176

(0.09)

Arson

-0.37***

-0.18**

(0.12)
-0.27**
(0.11)
-0.38***
(0.13)
0.08

(0.10)
0.13

(0.11)
a.04
(0.07)
0.02

(0.11)
-0.12
(0.08)
-0.21**
(0.09)
-0.15*
(0.09)
0.30***

(0.06)
-0.15**
(0.07)
-0.07
(0.05)
-0.07
(0.07)
-0.07
(0.11)
-0.02
(0.12)
-0.19
(0.16)
0.84*

(0.43)
-0.02
(0.33)
-0.82***
(0.30)
--0.82***
(0.16)

1.27***
(0.3 1)
0.06

(3.70)
39

5
167

(0.06)

Accidents

-0.32***
(0.06)

-0.29***

-0.10
(0.09)
-0.25***
(0.08)
-0.33***
(0.07)
-0.27***
(0.07)

--0.22***
(0.07)
-0.09
(0.07)

4.05
(0.07)
-0.03
(0.06)

-0.10
(0.07)
0.03

(0.04)
0.03

(0.04)
0.11***

(0.04)
-0.01
(0.06)
-0.07
(0.08)
0.32***

(0.07)
-0.01
(0.05)
0.43***

(0.15)
0.43*

(0.22)
-0.38**
(0.19)
-0.64***
(0.08)
0.98***

(0.20)
1.78

(2.68)
39

5
176

Lightning
-0.04
(0.07)
-0.53***
(0.08)
-0.41***
(0.13)
-0.57***
(0.12)
-0.28**
(0.13)
-0.42***
(0.13)
-0.29**
(0.13)
-0.13
(0.13)
0.26**

(0.12)
-0.21**
(0.10)
-0.39***
(0.08)
-0.35***
(0.07)
0.03

(0.11)
0.06

(0.13)
0.06

(0.10)
0.19**

(0.09)
0.07

(0.13)
-0.26**
(0.13)
-0.01
(0.43)

1.80***
(0.43)
0.02

(0.36)
-0.33**
(0.14)
2.18***

(0.35)
4.16

(3.03)
39

5
163

Adjusted RL 0.67 0.47 0.62 0.62
NOTE: Asterisks indicate statistical significance at I% ( ***), 5%(**),  and IO%(*). Equation estimates reported here exclude the estimates of county

effects (dummies), which are available from the authors. Standard errors are shown in parentheses.

All ignitions
-0.32***

Findings on the effects of the two kinds of prescribed
burning varied by the kind of prescribed burning and by
ignit ion source model .  Si te  plus seed prep burn permits  in  the
current year were generally negatively related to risk of
wildfire, but permits from the previous year were positively
related,  although the effects varied by ignit ion source.  In the
all-ignitions model, each 1% increase from mean levels of
permitted area for si te prep plus seed prep burns was associ-
ated with an average reduction in wildfire area of about 0.1%
for the current year. In contrast, permits for traditional

prescribed burning were ei ther stat is t ical ly posit ively related
to wildfire risk in the current year (at 1 to 5% significance) or
were unrelated. This result was contrary to our expectations
[equation (l)]. One possible explanat ion for  these f indings is
that our risk function specifications might have omitted a
variable that is a positive wildfire risk factor recognized by
land managers and that is only sometimes addressed with
traditional prescribed burning. An exception to this pre-
scribed fire finding was a 2 yr lag for lightning-ignited
wildfire, where the effect was negative.



Another possible explanation for the counterintuitive re-
sult on prescribed fire may be that our prescribed fire proxy
variables (permits) were inappropriate. The use of data on
burn permits in our statistical models, rather than data on
actually completed burns,  carries an assumption that  the rate
of burn permit completion is constant over time and space;
failure of this assumption would mean that our model esti-
mates would be inconsistent, although the statistical impor-
tance of this failure is  unknown. This subject  could be an area
for further research. It also bears mentioning that the coeffi-
cients for the burn permits variables implicitly contain the
rate of permit completion. For example, if 50% of permitted
burns were carried out, then the actual effect of prescribed
fire on wildfire area would be double the magnitude of what
the parameter estimates imply.

Pulpwood harvests, our measure of small diameter mate-
rials removals, had varying effects on wildfire risk, showing
complex temporal variability and influences which varied by
ignition source. For the all-ignitions model, the independent
effect of such harvesting was to increase the risk of wildfire.
For each 1% increase in harvest, wildfire risk increased by
0.59% 1 yr following harvest  and by 0.90% 2 yr after harvest ,
followed by a decrease of 0.57% in the third year following
harvest.[8]  One possibility for the inverse-U-shaped pattern
of influence on wildfire is that in the first 2 yr after harvest the
residual slash in partially cut stands becomes a fuel source.
After 3 yr,  however, enough of this residual slash is decom-
posed that the protective effects of a thinner litter layer and
open canopy reduce overall fire risk. Coupled with our
finding on the link between site and seed prep burning and
wildfire, this statistical link between pulpwood harvesting
and wildfire could imply that, unless all slash is removed
following a harvest, pulpwood harvesting may initially in-
crease the risk of wildfire.  However, the processes of harvest,
site prep, and regeneration are complex and have potentially
interacting effects on fire risk.  More research into this subject
is needed before we can place great credence in the explana-
tion above.

Across ignition sources, the effects of small diameter
materials removals varied in direction. Arson-ignited wild-
fire risk is positively associated with pulpwood removals
after one year and negatively after three. Accident-ignited
wildfire risk is positively related to pulpwood harvests for 1
and 2 yr  after the harvests, then negatively in the third. For
lightning, risks were unaffected by the I- and 3-yr lags of
harvest, although they were elevated 2 yr  after harvest. The
results suggest that the probability of ignition is related to
postharvest conditions but that the relationship differs by
ignition source. We can only speculate why this occurs. For
example, accidents and arson ignitions might be associated
with human act ivi t ies  around slash pi les  and windrows  whi le
lightning’s influence would be more equal across the site.
These two parts  of  the si te  would have differing fuel  dynam-
ics over t ime, and this might be reflected in differing temporal
patterns for the different ignition sources, but one could
construct  other  explanat ions.

The Niiio 3 SST anomaly and the 1998 dummy were
statistically significant explainers of variation in wildfire risk

in all models. However, the magnitude of the coefficients
varied by ignition source. In all models, SST anomalies were
negatively related to wildfire in years besides 1998, confirm-
ing the results of previous research (Brenner 1991, Barnett
and Brenner 1992). The ENS0 cycle of 1997-1998 was most
pronounced for l ightning-ignited f ires and least  pronounced
for accidents. In 1998, lightning dominated other ignition
sources,  so these f indings are not  surprising.

The number of dwellings relative to the area of forest in a
county was not  related to wildfire r isk in any of  the est imated
models. This result implies that greater risks of human-
caused ignit ions in more highly populated areas are offset  by
more effective suppression in these populated and roaded
areas and because of the greater fragmentation of fuels in
more urbanized settings.

A way to capture the value of the wildfire models is  to map
wildfire risk. Figure 5 shows how predicted forest wildfire
risk in 2000 differed from mean annual forest wildfire risk for
the more heavily forested northern port ion of Florida.  Blanks
are counties for which data constraints prevented risk esti-
mates. Counties in shades of gray or black had a predicted
above-average forest wildfire risk in 2000, while stippled
counties had a predicted below-average forest wildfire risk.
This map shows how a swath in western Florida was at  greater
risk of wildfire in 2000 and how northeast Florida was at
lower risk because of the high rate of wildfire there in 1998.
Although the map is simple and reveals information gaps, it
illustrates how wildfire risk models could be applied in
practice. Information provided by such maps could be used
by land managers at the beginning of the wildfire season to
help determine al locations of  presuppression and f irefighting
resources.

Conclusions

Our forest wildfire risk models produce several conclu-
sions. First, long-term temporal dynamics are important in
wildfire regimes in Florida. Therefore, information on past
wildfires in a county can help predict current wildfire risk
there. This suggests that the development of time-varying
risk models for wildfire could prove useful  for both insurance
and land management planning strategies and might be
possible at finer spatial scales than employed here. More
concretely,  combined with information on the trends of other
important wildfire risk determinants, a variety of forward-
looking maps of  wildfire  r isk such as  the one just  described-
rather than merely static or even forward-looking fuel maps-
could be developed from our estimated risk functions.

Second, climate plays a major role in determining
wildfire patterns in Florida, confirming previous studies
(Brenner 199 1,  Barnett and Brenner 1992). However, our
modeling effort might not have been at the best temporal
scale to permit identification of the complex interactions
between climate and fire in the state. Also, the statistical
link to ENS0 in 1998 differed from other years, and we
have speculated that this difference was due to the magni-
tude and to the timing of central Pacific sea surface
temperature changes in relation to the fire season. More
temporally refined broad scale modeling-with months as
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a < -0.5 Std. Dev.

a -0.5 -  0 .5  Std .  Dev .

,%3$ 0.5  -  1 S  S td .  Dev .

1.5  -  2 .5  Std .  Dev .

0 5 2.5 Std .  Dev .

cl No Pred i c t i on

Figure 5. Change in risk by county in 2000 from the 1982-1999 average wildfire risk for the county,
Florida. This map is based on the all ignition source model of wildfire risk shown in Table 1.  Risk
predictions for white counties were not possible, due to data limitations.

the temporal unit, for example-might reveal these rela-
tionships more fully.

Third, we identified vegetation management strategies
that influenced wildfire patterns in Florida. The direction
of influence of some strategies,  however,  was
counterintuitive, highlighting the need for research that
could validate this finding. Future modeling done at a
different (e.g., finer) scale of observational unit could be
a way to check the validity of such results. Furthermore, it
is entirely possible that traditional prescribed burning
reduces the intensity of wildfires, even if it does not reduce
the amount of wildfire. We did not evaluate wildfire
intensity in this study.

Fourth, the wildland-urban interface was identified as a
statistically insignificant wildfire risk factor. Risks of eco-
nomic damage from wildfire in the WUI  (Butry et al. 2001),
however, might be sufficient incentive to further refine our
understanding of the relationship between wildfire and hu-
man factors. Future research might more successfully char-
acterize the WUI’s  influence by explicitly accounting for
varying road network density,  the number of houses located
within forests, the amount of land dedicated to agriculture,
and the degree of suppression effort  expended by communi-
ties, homeowners, and managers of forests.

Fifth, different ignition sources of wildfire do seem to
respond differently to the long-run suppressive effect of
wildfire, the effects of ENS0 during a Super El Nillo
cycle, and the effects of vegetation management and har-
vesting. Hence, there might be some advantage to further
exploring differences among ignition-specific wildfire
risks. To the extent that the mix of ignitions varies across
Florida, the differing wildfire risk functions reported here
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imply that the best mix of strategies to mitigate wildfire
damages may vary by location.

Forest and fire management policies regarding fuel
management and wildfire risk mitigation have been based
on very few studies conducted at the broad temporal and
spatial scales over which the policies are implemented.
Such policies should be evaluated in ways that recognize
the complexity of the relationships among wildfire, sup-
pression and presuppression activities, diverse ignition
risks, stochastic weather and climate, changing land use
patterns, and other ecological factors. Our models repre-
sent initial steps toward quantifying these relationships,
moving us closer to a goal of understanding the best
approaches to wildfire intervention in wildfire prone land-
scapes.

Endnotes
[ I] As we shall describe, our models are actually forest wildfire risk functions

because  we  a re  es t imat ing  fo res t  w i ld f i re  a rea  d iv ided  by  fo res t  a rea .  The
d i s t i n c t i o n  i s  n o t  i m m e d i a t e l y  i m p o r t a n t ,  a s  t h e  t r a n s f o r m a t i o n  o f  r i s k  t o
p r o d u c t i o n  i s  t r i v i a l .

121  Four  t ypes  o f  pe rmi ts  were  recogn ized  in  the  r i sk  func t ions  es t ima ted
h e r e ,  a n d  t h e s e  f o u r  w e r e  g r o u p e d  i n t o  t w o  c a t e g o r i e s :  h a z a r d  r e d u c t i o n
a n d  “ e c o l o g y  b u r n ”  p e r m i t s ,  g r o u p e d  i n t o  a  c a t e g o r y  t h a t  w e  c a l l  “ t r a d i -
t i o n a l  p r e s c r i b e d  b u r n i n g , ”  a n d  s i t e  p r e p  a n d  p r i o r - t o - s e e d  silvicultural
b u r n  p e r m i t s ,  w h i c h  w e r e  g r o u p e d  i n t o  a  c a t e g o r y  t h a t  w e  c a l l  “ s i t e  p l u s
s e e d  p r e p  b u r n i n g . ”

[3]  For example, as characterized by the zunount  of land in ecoregion
sections, a classification scheme related to land form, soil types, potential
v e g e t a t i o n ,  a n d  c l i m a t e .  I n  F l o r i d a .  t h e r e a r e f o u r  s e c t i o n s  ofProvince  232
( B ,  C ,  D ,  C ) a n d  o n e  ( A )  o f  P r o v i n c e  411,  the  Everg lades .  See  Ba i ley
(1995 )  fo r  a  descr ip t ion  o f  each .

[4]  N o  s i g n i f i c a n t  s e r i a l  c o r r e l a t i o n s  w e r e  i d e n t i f i e d  i n  o u r  e s t i m a t e d  m o d e l s ,
s o  n o  a d d i t i o n a l  m o d e l i n g  w a s  i n d i c a t e d .

[S]  Tes ts  o f  spa t ia l  au tocor re la t ion  (Moran  1948 )  tha t  examined  bo th  annua l
and  aggrega ted  (1994-1999)  l e v e l s  o f  e r r o r  a u t o c o r r e l a t i o n  c o u l d  n o t
re jec t  spa t ia l  independence  ( resu l ts  o f  these  tes ts  a re  ava i lab le  f rom the
a u t h o r s ) .  A  s p a t i a l  l a g  m o d e l  o f  t h e  k i n d  r e c o m m e n d e d  b y  A n s e l i n  ( 1 9 8 8 )



was estimated and found no significant spatial lag dependence (results
also available from the authors). Spatial lag and error versions (Ord 1975,
Anselin  1988) of the all-ignitions version of the wildfire risk model were
derived and estimated. ArcView@ (Version 3.1) and the SpaceStatTM
(Version 1.90) Extension for ArcView@ were used to generate the
inverse-distance spatial weighting matrix needed. In those estimates,
available from the authors, the time-invariant spatial lag and error
parameter estimates were not statistically different from zero at 5%
significance.

[6] Of course, grassy fuel fires may bum into forests or may in fact start in the
midst of forests; we expect this simplification to be most important in
counties where grassy fuels are predominant.

[7]  Within counties, the likelihood of overlap is even smaller; often, bum
permits are not offered once the wildfire season is underway in the zone
of the permitting agency.

(81 Subsequent lags (4,5,6,7)  were not statistically related to wildfire area
in the current year, at 10% significance or lower.
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